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Fiber Bragg-Grating True Time-Delay Systems:
Discrete-Grating Array 3-b Delay Lines
and Chirped-Grating 6-b Delay Lines

Anna Molony, Lin Zhang, John A. R. William$Jlember, IEEE Jan BennionMember, IEEEC. Edge, and J. Fells

Abstract—We describe wavelength-addressed 3- and 6-b fiber- RF in
optic true time-delay (TTD) lines implemented using ultraviolet-
inscribed Bragg gratings. The 3-b delay line is fabricated from —
an array of discrete- and uniform-period Bragg gratings, and a L |
minimum time delay of 9.09 ps is selectable, making it suitable Tuneable RF Optical
for phased-array antenna (PAA) beamforming control at RF Laser Modulator
frequencies of up to about 3 GHz with 10 phase resolution. The RF out
6-b delay line is fabricated using a chirped-period Bragg grating, i
and is suitable for beamforming control at RF frequencies of up Optical
to ~ 48 GHz, with 10° phase resolution. Receiver

Bragg Grating
Delay Line

Index Terms— Fiber Bragg grating, microwave photonics, Fig. 1. 3-b discrete fiber Bragg-grating delay line.

phased-array antennas.
To implement an optical RF beamforming network, the
I. INTRODUCTION RF signal is impressed on an optical carrier as an intensity
modulation, and the optical carrier distributed to the antenna
‘elements via optical fibers. While fiber-optic-based TTD sys-
ms have been demonstrated using switched lengths of fiber,
h systems require bulk optical elements compromising the

HE USE OF fiber optics for implementing true time

delay (TTD) control of microwave phased-array anten
(PAA) systems has been investigated for many years [1], [2],
and s_everal system demon.stratlons have b_e_en reportgd Sy pact nature of the optical fiber. Alternatively, a dispersive
TTD is used in place of simple phase-shifting techniques Sement fiber may be used and the acquired time delay
wide-bandwidth applications in order to prevent the occurrenc

of beam squint at the extremes of the frequency scan. Wh\g%ned by tuning the optical-carrier wavelength. This dispersive

this can be realized by replacing phase-shifting microway ement may be high-dispersion optical fiber [S]; however, &

. . . : . 'iampler and more compact approach to wavelength switching
waveguides with switched Iengths. of glectrlcal wavegul eEcesses the inherent advantage of wavelength-selected time
or cable, such components sustain high loss at high

frequencies and are susceptible to electrical crosstalk aﬁiays through the use of a series of in-fiber Bragg gratings

temperature-induced time-delay changes. In contrast, optigal [7] fabricated along a single length of optical fiber. Each
TTD control networks are lightweight, compact, immune tg agg grating has a different central wavelength and individual

o ratings are addressed by wavelength tuning the optical carrier,
electromagnetic interference and crosstalk, and can offer sjg- . . .
o e . . . “I[fereby selecting the length of fiber traversed by the optical

nificantly lower transmission loss and higher signal bandwid

. . ) LS . Signal and so choosing the time delay. This is illustrated in Fig.
capacity. Use of optical-fiber transmission-line beamformlng Previous work on fiber Bragg-grating TTD delay lines [8]
networks for both communications and radar antennas cat '

. m has been solely concerned with arrays of discrete Bragg
therefore, overcome many of the problems associated . . .
) . ratings, which have been used to create time delays of less
electrical TTD control networks, and have the potential t . . . ;
. an 20 ps in duration [9], suitable for beam-forming control
become a low-cost alternative to them. : .
at RF frequencies of up to about 1.5 GHz. In this paper, we
present results for a 3-b optical-fiber Bragg-grating TTD delay
line capable of producing delays of less than 10 ps, suitable
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loss, is required to route the signal to the photodetector for sgg
conversion to an electrical signal. This loss is comparable g, |
to that experienced by a typical 4-b nonwavelength-switched .
TTD device. Use of an optical circulator would further reduce or
the loss to< 3 dB. 530 ¢
The maximum number of time-delay elements which can be, 520 .
fabricated in each delay line is determined by the tuning rang% 510 |
of the optical sourceAA and the optical bandwidth of each &
grating. The optical bandwidtiAA of a Bragg grating [10]
determines the minimum possible wavelength spacing between

500 |
490 |

L 4
adjacent gratings in the delay line and, hence, the maximum 480 1
number of discrete time-delay elementg,,..., which can be 470 | N
addressed by a single optical source as follows: 460 , , { : : 1
AA 1490 1495 1500 1505 1510 1515 1520 1525
Niax & AN (1) Wavelength/nm
The minimum achievable time dela¥,.i,, is given by Fig. 2. Time delay as a function of wavelength for a gratings array with
2-mm-long gratings and 1-mm separation.
2nd
CTmin = i (2)
¢ 0.8
whered,, is the center-to-center spacing between gratings, 07}
the refractive index of the optical fiber, ands the free-space 2 o6 |
speed of light. z
¢ 05 |
=
[
[l. EXPERIMENTAL RESULTS = 04 1
A fiber Bragg-grating delay line containing eight discrete % °3
Bragg gratings was fabricated in boron—germania codoped § 0.2
single-mode fiber which had been presensitized by immersion = g4 |
in hydrogen [11]. Each grating had a length of 2 mm, a full- 0 ‘ ‘ ‘
width at half-maximum (FWHM) bandwidth of 0.5 nm, and 1520 1530 1540 1550 1560

a peak reflectivity of~ 60%. The delay line was fabricated
to have a 1-mm center-to-center spacing between the gratings, N . _
whose central Wavelengths were 1494.10, 1498.75, 1501'9%\’2' Reflectivity of the 30-nm chirped Bragg grating for TTD control of
1503.75, 1515.05, 1518.05, 1521.85, and 1524.65 nm, respec-
tively. From (2), a 1-mm spacing between adjacent gratings in
a delay line corresponds to a minimum time delay of 9.67 pi\ order to produce time-delay steps of significantly smaller
The time-delay measurements were performed either in theration, and thus increase the RF frequency at which 10
130 MHz-20 GHz range using a GaAs optical modulatgrhase-resolution beamforming control can be achieved, a
and a network analyzer or at 1 GHz using a lithium—niobasingle chirped Bragg grating can be used in place of the
modulator and a vector voltmeter. An external-cavity gratingray of linear gratings. This enables production of effective
tuned semiconductor laser with a resolution of 1 pm was usedntinuously variable time delays, rather than discrete delay
as the optical source. steps as mentioned above. Tuning the optical source wave-
The measured absolute time delay at the peak reflectiemgth across the bandwidth of the chirped grating results
wavelength of each grating is plotted as a function of wavés the point of reflection within the gratingliding along
length (position along the delay line) in Fig. 2. The time-delaigs length. The minimum time delay which can be created
measurement resolution was less than 1.0 ps. The gratingsuéng a chirped-grating delay line is thus determined by the
on a dispersion of £2.65 +) 0.15 ps/nm, and the averageoptical-carrier-tuning step size and the optical bandwidth of
delay step size is 12.36 ps. The small deviations of tliee grating.
experimentally measured values away from the straight-lineFour chirped Bragg gratings with bandwidths of 7, 12,
fits can be attributed to uncertainties in the precision @0, and 30 nm, respectively, were fabricated in hydrogenated
the positioning of the Bragg gratings during fabrication anbloron—germania codoped single-mode optical fiber, each with
to resonance effects caused by the physical overlappingaoength of 4 mm and a reflectivity ef 60%. The grating am-
the gratings. This fiber Bragg-grating delay line is suitablglitude profile was approximately Gaussian so as to improve
for beamforming control, with 10 phase resolution at RFthe linearity of the group delay characteristic. The minimum
frequencies of up tov 3 GHz. achievable time delay for each grating was measured using
The 9.09-ps delay steps represent the practical lower linbioth the 130-MHz—-20-GHz and 1-GHz measurement systems,
on the delay step size which can be produced through thed the individual spectral profiles recorded. Fig. 3 shows the
use of delay lines comprising discrete linear Bragg gratingsormalized spectral profile of the 30-nm chirped grating.

Wavelength/nm
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phase error is included, the minimum time-delay step size
which can be achieved must be reduced-t®.6 ps in order

to comply with the 10 phase resolution requirement, thus the
gratings can be used to produce six bits of time delay.

The use of arrays of discrete linear Bragg gratings as TTD
elements has been extended to its practical limit and a TTD
element suitable for beamforming control at RF frequencies
of up to ~ 3 GHz has been reported. A significant increase
in the RF frequency at which fiber Bragg-grating TTD control
of PAA’s can be controlled has been demonstrated, with the
30-nm bandwidth chirped Bragg grating shown to be suitable

CONCLUSION

Fig. 4. Time delay as a function of wavelength for 30-nm chirped-grating®f US€ as a time-delay element for beamforming control at

1-GHz measurement system.

TABLE |
MEASURED DISPERSIONV ALUES FOR CHIRPED OR VARYING BANDWIDTHS

Grating Dispersion Dispersion

Bandwidth  (130MHz-20GHz system) (1GHz system)

(nm) (ps.nm™) (ps.nm™)

7 -14.442 +0.563 -11.841 +0.196
12 -5.681 + 0.096 -5.231 +0.048
20 2479 +0.040 2.169  £0.044
30 -1.713 +0.019 -1.962 +(0.011

frequencies of up to~ 48 GHz. The number of delay-step
increments available with fiber Bragg-grating optical TTD
elements has been greatly increased, with six bits of time delay
achievable using the 30-nm bandwidth chirped Bragg-grating
TTD element.

In order to increase the RF-signal modulation frequency
range which can be used, the chirp rate of the gratings must
be decreased, thus reducing the spatial displacement of the
reflection points of the optical-carrier modulation sidebands
from that of the central optical-carrier wavelength, and thus
reducing the time, phase, and error incurred by the signal. We

Fig. 4, a typical measurement, shows time delay as a furgvisage the use of physically longer chirped Bragg gratings
tion of wavelength for the 30-nm grating measured using the t® achieve this.
GHz measurement system. Straight-line fits were performed or* significant issue for the practical use of these devices is
the experimental data recorded with both the 130-MHz—2-GHgproducibility and precision. This problem can be overcome
measurement system and the 1-GHz measurement systefyigmprinting the gratings using near-field exposure through
shown for each grating and summarized in Table I. We beliep8ase masks. The required delay characteristic can be built into
that the experimentally significant differences between the e phase mask usingbeam lithography, and then transferred
sets of results, which were taken in different conditions, arigeproducibly to the fiber Bragg gratings.
due to variation in environmental effects such as temperature

and fiber strain.
The above chirped gratings can, therefore, in principle
used to create time delays from as small as 40 fs to

baFé]

large as 59 ps; the former being that which is availabld2]
using the smallest wavelength tuning-step size in the 1-GHz
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